Superabundant Numbers and the Riemann Hypothesis

نویسندگان

  • Amir Akbary
  • Zachary Friggstad
چکیده

For a lively exposition of this theorem and its connection to the Riemann Hypothesis see [5]. In this note, we propose a method that will establish explicit upper bounds for σ(n)/en log log n. Our main observation is that the least number violating the inequality (2) should be a superabundant number. A positive integer n is said to be superabundant if σ(m)/m < σ(n)/n for all m < n. The first 20 superabundant numbers are 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 10080. The sequence of superabundant numbers is the sequence A004394 in Sloane’s Encyclopedia [8]. The list of the first 500 superabundant numbers is available at [6], where

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complements to Li's Criterion for the Riemann Hypothesis

In a recent paper Xian-Jin Li showed that the Riemann Hypothesis holds if and only if n = P 1?(1?1==) n has n > 0 for n = 1; 2; 3; : : : where runs over the complex zeros of the Riemann zeta function. We show that Li's criterion follows as a consequence of a general set of inequalities for an arbitrary multiset of complex numbers and therefore is not speciic to zeta functions. We also give an a...

متن کامل

Evidence in favor of the Baez-Duarte criterion for the Riemann Hypothesis

We give formulae allowing calculation of numerical values of the numbers ck appearing in the Baez-Duarte criterion for the Riemann Hypothesis for arbitrary large k. We present plots of ck for k ∈ (1, 10).

متن کامل

Hilbert ’ s Sixth Problem ∗

This talk will come in four parts. First, I will introduce the Riemann hypothesis (RH) as it was first introduced, using the Riemann zeta function, and discuss briefly its connection to number theory and prime numbers. Second, I will make this connection explicit by discussion a famous problem equivalent to RH. Third, I will examine the generalised Riemann hypothesis (GRH) and, finally, will li...

متن کامل

Quantum Knots and Riemann Hypothesis

In this paper we propose a quantum gauge system from which we construct generalized Wilson loops which will be as quantum knots. From quantum knots we give a classification table of knots where knots are one-to-one assigned with an integer such that prime knots are bijectively assigned with prime numbers and the prime number 2 corresponds to the trefoil knot. Then by considering the quantum kno...

متن کامل

Riemann Hypothesis and Physics

Riemann hypothesis states that the nontrivial zeros of Riemann Zeta function lie on the axis x = 1/2. Since Riemann zeta function allows interpretation as a thermodynamical partition function for a quantum field theoretical system consisting of bosons labelled by primes, it is interesting to look Riemann hypothesis from the perspective of physics. Quantum TGD and also TGD inspired theory of con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American Mathematical Monthly

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2009